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Abstract. It is shown how Onsager’s reaction field may be incorporated in mean-field-like 
calculations for the q-state Potts model. Its influence on the nature of the phase transition 
is considered both in a one-site and a two-site cluster approximation. Considerable 
improvement is obtained for q,(d), the value which separates first- and second-order 
transitions. The way in which q,(d) is modified when a second-neighbour interaction is 
added to the ferromagnetic nearest-neighbour one is also studied. 

1. Introduction 

The nature of the phase transition in the q-state Potts model has posed a special 
problem since the introduction of the model (Potts 1952, Wu 1982, Nienhuis et af 
1981). Exact arguments (Baxter 1973) in d = 2, e.g., show that a first-order transition 
occurs for q > 4  and a second order one for ~ 4 .  In general, there should exist a 
function q,(d),  such that in d dimensions the change from second to first order occurs 
at q =qc(d) .  Up to now no exact expression for q,(d) is known, although from a 
combination of several approximate methods one has obtained a rather precise idea 
of the general behaviour of this function (Wu 1982, Nienhuis et af 1981). 

On the other hand, qJd)  is expected to be a non-universal quantity; as a con- 
sequence it could be strongly sensitive to modifications of the Hamiltonian, such as 
the inclusion of second-neighbour ferromagnetic or antiferromagnetic interactions 
(Fucito and Parisi 1981). Evidence for such effects has been obtained recently by 
Monte Carlo simulations (Fucito and Vulpiani 1982), but an analytical way of 
approaching this problem, at least qualitatively, has been lacking up to now. 

Simple position space renormalisation calculations (Burkhardt et af 1976) predict 
a second-order transition for all q, and only the introduction of vacancies in the model 
allows the calculation of a non-trivial estimate for qC(d) (Nienhuis et a1 1979, 1981). 
A straightforward molecular field approximation (Kihara et af 1954, Mittag and 
Stephen 1974) predicts on the contrary a first-order transition for q > 2 and for all d. 
It is thus obvious to look for an improvement on this approximation that might 
eventually yield a more realistic estimate for q,(d),  and some insight into its dependence 
on the type of Hamiltonian. The physically most promising way for correcting the 
simplifications of the molecular field approximation is to take account of Onsager’s 
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reaction field (Onsager 1936, Brout and Thomas 1967, Dekeyser and Halzen 1969). 
In the framework of magnetic systems, this field takes into account the influence of 
a given spin on its neighbours, in the sense that the thermal average of a neighbouring 
spin will be allowed to depend on the actual orientation of the central spin. We now 
propose to investigate the influence of this reaction field on the nature of the phase 
transition in the q-state Potts model. 

In § 2 we briefly summarise the formulae of relevance to the Potts model and its 
molecular field approximation. In § 3 we derive an expression for the reaction field 
in the nearest-neighbour case, and in 0 4 we determine its consequences on the nature 
of the phase transition. Section 5 is devoted to the discussion of the effect on q, (d)  
of a further-neighbour interaction. 

2. Description of the model and molecular field approximation 

In the q-state Potts model a variable si is associated with each site i of a regular lattice; 
it may assume the q values si = 0, 1, . . . , q - 1. We consider the Hamiltonian 

Hh = -J 1 as,,s, - y1 1 hkiasi.k 
(ij) k = O  i 

The first sum runs over all nearest-neighbour pairs ( i j ) .  The fields hki will eventually 
be equated to zero, since our main interest lies in the Hamiltonian Ho. Below a 
certain temperature condensation is expected to occur into e.g. the state s = 0, such 
that the thermal averages of the state occupations are given by 

m is the order parameter of the model. In principle the Pk may be calculated from 
the partition function 2 of the system by 

In the standard mean field approximation, one assumes that the as i& at the z 
nearest-neighbour lattice sites of any site i may be replaced in (1) by their average 
values according to (2). The one-particle partition function (for h = 0) is then given by 

and 

where K = PJ. With the assumption (2), this leads to the standard mean field equation 
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One easily verifies that F l ( x )  is a monotonously increasing function of x, such that 
its inverse function F;' is uniquely defined. This allows us to write ( 5 )  in the alternative 
form 

(6) 

It is straightforward to show that, up to a constant factor q / (q  - l ) ,  g(m) is the derivative 
with respect to m of pf, where f is the m-dependent free energy function per lattice 
site in this simple mean field approximation, as calculated e.g. by Mittab and Stephen 
(1974). The equilibrium magnetisation mo is then the root of (6) at which pf has an 
absolute minimum; this implies that necessarily g'(mo) has to be positive. The negative 
second-order term in the Taylor expansion 

g(m) =FT' (m) -Kzm = 0. 

g (m)  = (q  - ~ z ) m  - tq(q  -2 )m2+.  . . (7) 

leads directly to the conclusion of a first-order transition for q >2 .  For q < 2 this 
formula suggests a first-order transition into a state with negative m. This should in 
general be excluded as an artifact of the approximation, since the ground state of (1) 
has m = 1. This aspect of the mean field approximation has been discussed before 
(Harris et a1 1975, Priest and Lubensky 1976), and in the remaining part of the paper 
we will assume O s  m s 1, in the hope that a full theory would indeed exclude 
thermodynamic states with m < 0. 

3. The reaction field in the Potts model 

In order to derive the reaction field for the Potts model, we repeat the calculation of 
§ 2, but in writing down the one-particle partition function for si, we will use the 
conditional probabilities for the &,,k : 

0 - 1  

k = O  

where 

pck = ( a s , , k ) l s , = k  (9) 

is the probability for finding si = k when we know that s, = k at the neighbouring 
site i. 

In order to calculate these p i ,  we define for a nearest-neighbour pair ( i , j )  the 
susceptibilities 

The last equation, a special case of the fluctuation-dissipation theorem, is obvious 
from (3) .  Furthermore, we have 

Combining (10) and (11) gives 
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X k  may be determined approximately as follows: 

where we have neglected the dependence of ( a s , & )  on h k ,  through intermediate lattice 
sites. Since j is one of the z neighbours of site i, we may use our previous result (46) 
to obtain a first-order correction. This yields 

a ( a s 2 , k ) / a ( a s j , k ' )  = K P k ( a k , k ' - P k ' )  (14) 

and 

a ( a s , , k ' ) / a h k ,  = P P k  ( a k , k ' - p k ' )  (15) 

and thus 

Substituting now (2) and (16) in (12), we get 

Pco ={[ l+(q- l )ml /q}[ l+(K/4) ( l -m)2(q-1)1 ,  ( 1 7 ~ )  

P', = [(I - m ) /ql{l+ (K/q)[q( l+ m 2 ,  - (1 - m 1211 ( n  31). (176) 

Using now these conditional probabilities in (8), we easily obtain the self- 

(18) 

where F l ( x )  was defined in ( 5 ) .  Whereas the term Kzm has its origin in the usual 
molecular field exerted on site i by its z neighbours, the remaining term in the 
argument of F1 describes the correction due to the reaction field. Instead of (6), we 
now have the following improved approximation for the derivative of the free energy 
with respect to m : 

g l ( m )  =FY1 (m) -Kzm{l- (K/q)(l-  mX(3 - 4 )  + (4  - 1)ml) 

consistency equation, which can be written in the form 

m = F I U K z N  - (K/q ) ( l -  m )[(3 -4)  + (4  - 1)m 3% 

= (q - Kz + ( K Z z / 4 ) ( 3  -q))m - f(q - 2)(q -4K2z/q)m2 + . , . . (19) 

4. Nature of the phase transition 

Since we assume m 3 0 ,  we expect to find a second-order phase transition when the 
expansion of the free energy in powers of the order parameter 

f ( m )  =A2m2+A3m3+. . , (20) 
has the properties A 2  = 0, A 3  > 0. This means that, apart from the possibility of 
extrema at higher m-values caused by negative higher-order terms, we may determine 
the critical value 4c above which no second-order transition will exist, by solving 
simultaneously A2 = 0 and A 3  = 0. Since g ( m )  is proportional to the derivative of 
/3f(m),  this amounts to 

q -Kz + ( K 2 z / 4 ) ( 3  - 4 )  = 0, 

q - (4K2z/q) = 0 
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with the solution 

qcl = 7 - 2 JT. (22a) 

We know (Wu 1982) that, at least for d = 2, qc is independent of the lattice, and thus 
qc(d)  should not depend directly on z. Therefore, we will limit ourselves to the lattice 
type that can be most easily extended to general dimensions, i.e. the hypercubic lattice 
with z = 2d. We then obtain 

qc1(d)=7-2J2d.  (226) 

This determination of qc is a considerable improvement on the poor mean field 
prediction qc = 2 for all d. 

A natural way for trying to obtain even better estimates for qc(d) is to make a 
finite cluster calculation instead of the single-site calculation (8). The interactions 
inside the cluster have to be considered exactly, whereas the interaction between the 
cluster and environment may be treated in the mean field sense, again corrected by 
reaction field considerations. Let us take e.g. the example of a simple two-site cluster, 
in which each site has z - 1 remaining neighbours, to be treated in a mean field sense. 
The partition function of this cluster may be written as 

z2= c (exp{K[1+2(z - ~ ) ~ E ~ I I +  c exp[K(z - l ) ( p t ,  +pi2)]) .  

Using (17), this leads us to the mean field equation 

q- '  

k l = 0  kz'ki 
(23) 

m = F2UK(z - l )m{ l -  (K /q ) ( l -  m )[(3 - q )  + (4 - l)ml111 (24) 

where 

and to the next approximation for q ( m ) :  

gz(m 1 = FI' ( m  1 - K ( z  - l )m{ l -  (K /q ) ( l -  m 1[(3 - 4 )  + (4 - 1)m 11. (26) 

The function qcz(d = z/2) for this two-site cluster may again be obtained by imposing 
the simultaneous vanishing of the coefficients of m and m 2  in the series expansion of 
g 2 ( m ) .  This leads to the equations 

q t = K ( z  -1)[1-(K/q)(3-q)I9 (2%) 
3c2 - 2c3 = 4q -2(z - 1 1 ~ 2 ,  (2% 1 

6 = (e" +4 - 1)/(2eK +4 -2).  

where 

(27c 1 
These equations have to be solved numerically. The results are shown in figure 1, 
together with q , ~ ( d ) ,  and they are compared with the curve that is expected to represent 
the true values (Nienhuis et a1 1981). We have also verified numerically that both 
gl(m) and g 2 ( m )  describe bona-fide second-order phase transitions for 4 <qcl  and 
q <qc2, respectively; in both cases there is only one minimum for the free energy for 
m > O .  
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Figure 1. Values for q,(d) as obtained from a one-site (- - -) and a two-site (-1 
approximation. q,(d) = 2 is the mean field result. The exactly known values are marked 
by dots, and the line ‘- - - -’ is a qualitative sketch of the expected true values. 

5. Dependence of qc on further-neighbour interactions 

Our approximation scheme with reaction field corrections can also be used to study, 
at least qualitatively, the dependence of qC on modifications of the Hamiltonian (1). 
The non-universal character of qc has recently been stressed by Fucito and Parisi 
(1981); indeed, Monte Carlo simulations in three dimensions (Fucito and Vulpiani 
1982) seem to indicate that qc can become larger when a small antiferromagnetic 
further-neighbour interaction is included in (1). Monte Carlo studies have also shown 
that for a triangular lattice with two- and three-body interactions, qc may depend on 
the coupling constants (Saito 1982). 

Let us indicate by J’ (and L = PJ‘) the strength of a second-neighbour coupling 
to be added to (1). The standard mean-field-like calculation sketched in § 2 may be 
repeated in this case, leading to a g-function identical to (7), except for the fact that 
Kz should be replaced by (Kz +Lz’),  with z ’  being the number of second neighbours. 
This implies that the standard mean field treatment still leads to qc = 2, independent 
of L. The presence of L, however, can modify qc in a mean field calculation with 
reaction field corrections. 

This calculation runs parallel to the one presented in 0 3. Due to the additional 
interactions with z ’ second neighbours, the single-spin partition function will now be 
of the form 

where 

p :  ( a s , . k ) l s , = k ,  (29) 

where j is a second neighbour of i. p :  is the probability of finding the jth spin in the 
kth state, if we know that its second neighbour i is in the same state. Of course p r  
will not coincide with p i .  Indeed, a calculation similar to the one performed in $ 2  
leads to the result (17) for p i ,  and for p ;  to a formula analogous to (17), but with K 
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replaced by L. The g-function obtained from (28) is then given by 

gl(m ) = F;’ ( m  1 - K“1- (K/q) ( l -  m )[(3 - 4 )  + (4 - 1)m 11 
-Lz’m{l --(L/q)(l -m)[(3 - q ) + ( 4  - l)m11 

q-Kz -Lz’+[(KZz +L2z’) /q](3-q)=0,  (31a) 

(30) 

and the conditions determining qc become: 

q = (4K2z  +4L2z’)/q, (31b) 

which, of course, reduce to (21) for L = 0. 
Equations (31) allow us to determine qC as a function of L, z and z’ ,  €or a given 

lattice. When considering negative L, one should not allow the ratio ILI/K to be too 
big, since otherwise the ferromagnetic ground state could be destroyed. ‘The effect 
on qc of a small perturbation in the Hamiltonian can be studied most easily by 
linearising (31) in L.  For a d-dimensional hypercubic lattice ( z  = 2d, z‘ = 2d(d - 1)) 
we thus obtain: 

qcl(d,  L )  = 7 - 2 J G - 8 d ( d  -1)L/(7-2J2d)+O(L2),  (32) 

which clearly shows that a negative L determines an increment, whereas a positive L 
determines a decrement of qc. This qualitative effect is in agreement with the results 
of Monte Carlo studies (Fucito and Vulpiani 1982). 

6. Discussion and conclusions 

The qc(d) curves obtained from our simple reaction field calculations are rather 
qualitative and still far off known or conjectured values. They do not reproduce 
the expected limit property qc + 03 when d + 1, neither are they in agreement with 
qc(2) = 4 or qc(4) = 2. Our results demonstrate, however, that one may get away from 
the trivial mean field prediction by using the conditional probabilities (9), even in 
their most simple approximation. The larger cluster gives somewhat better results at 
lower dimensions. More sophisticated approaches along the same lines can be expected 
to reproduce much more accurate results. In particular, by using the specific lattice 
structure, as has been done e.g. for the Ising model (Dekeyser and Halzen 1969), one 
should be able to reproduce better the dimensionality dependence of qc, which is only 
simulated here through the z dependence. 

Our calculation in 8 5 deserves, in our opinion, particular interest. It is concerned 
with the important non-universal character of qC.  Despite its simplicity, our calculation 
gives a result in qualitative agreement with Monte Carlo experiments. To our know- 
ledge, up to now there has been no alternative approximate way of attacking this 
problem (Saito 1982), and further efforts along these lines could be revealed to be 
fruitful. 

The problem of distinguishing between first- and second-order transitions is a 
fundamental and general one. Very often it turns out to be extremely difficult to 
solve this problem, even with the most sophisticated approximation methods, like the 
renormalisation group. On the other hand, in the case of the Potts model, the existing 
real space renormalisation group calculations seem to give a too universal character 
to qc (Nienhuis et a1 1981). In our opinion, it is thus important to have shown in a 
specific example that it is possible to have non-trivial predictions, even within a mean 
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field type of approach, when one takes into account reaction field effects. This is 
especially remarkable when we realise that, within a classical context, other improve- 
ments of the mean field approach, like the Bethe and similar approximations (Domb 
1960), all lead to the trivial prediction qc = 2. Concerning this point, we would like 
to mention that a criterion has recently been proposed for distinguishing between 
continuous and discontinuous transitions, based on the comparison of different mean- 
field-like approximations (Livi et ul 1982). 
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